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EUCALL - WP5 – UFDAC 

 
Milestone 5.2: M18 / 31.03.2017 

 

"Evaluation of test case implementations for processing of  

digitizer data and image analysis“ 

 

This milestone deals with two test cases for high throughput data analysis test cases for 

digitizer data and image analysis. These test cases came out of the previous Milestone 5.1 

that defined requirements, interfaces and formats of the various application cases in UFDAC. 

Following a recent GPU/FPGA workshop at the European XFEL organized by the UFDAC WP 

that was open for all EUCALL members we loosely defined what applications are suitable for 

FPGA solutions and which one are suitable for GPU solutions. 

Developers should prefer an FPGA-based solution if: 

• Low latencies are required, preferably due to direct response to the outcome of the 

analysis. 

• High streaming throughput is required, meaning that buffering a stream is not 

acceptable, e.g. digitizer or event data that is used for direct feedback. Note that of 

course buffering of data streams is possible and standard procedure on FPGAs, but is 

required on GPUs. 

• Local memory requirements are not exceptionally high. 

• Scalability to massive numbers of independent data pipelines is easy and data 

exchange between FPGAs is not overly complex. 

• Analysis code is limited in complexity and does not need many changes once 

implemented efficiently. 

• Analysis code can stay locally on one FPGA or communication between FPGAs is 

embarrassingly parallel. 

Developers should prefer a GPU-based solution if: 

• Latencies can be hidden by using buffering and block-parallel analysis of data, which 

is often the case for image data. 

• High throughput is required but streams can be buffered and worked on in 

blocks/chunks/packets of data. 

• PCIe bandwidth is not limiting in terms of throughput wanted. This limitation can 

occur for optimized GPU code for which the analysis takes less time than memory 

transfer to the GPU. 

• Local memory requirements are high and can be mitigated by dividing data into 

blocks/chunks/packets. 
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• Parallelization of algorithms over blocks/chunks/packages is possible and the 

computations performed on one block/chunk/packet are mostly independent from 

those on other ones. 

• Analysis code can become complex and profits from independent steps that can 

operate on the same data or similar amount of data, see e.g. imaging pipelines. 

• Analysis code can require exchange of data between GPUs 

• Analysis code requires nonlinear scalability with data rate and cannot be trivially 

scaled. 

• Analysis code is complex, can be subject to frequent changes and might require the 

use of more than one GPU. 

It is clear that applications cannot easily be put in one of these two categories and that the 

rules mentioned above are not strict but meant as a guideline. As an example, simple signal 

or image processing tasks can be implemented on FPGAs as well as on GPUs. The decisions 

for a certain hardware or even a combination of both depends on the application 

environment, the programming knowledge accessible, price, power, space and maintenance 

requirements and the question on future needs for scalability. 

In general, more complex computations will be easier to implement on GPUs than on FPGAs. 

However, some FPGA vendors now allow to program their FPGAs using OpenCL or dialects 

thereof that also can be compiled to run on GPU architectures and CPUs, connection of 

external DDR3 memory to FPGAs is possible as is FPGA to FPGA communication. Regardless 

of the choice of platform, it is difficult to write portable code for high data rate analysis 

applications that allows for changing the hardware during the lifetime of the code. We plan 

to address some of these problems inside UFDAC. 

We thus have restricted ourselves to select two test cases that are typical of the applications 

supported within UFDAC, namely high data rate digitizer data and image data and show first 

performance measurements with a given hardware. The insight gained from these test cases 

will then be fed back into the developments for the other test cases. 
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1. Test case Digitizer Data / FPGA 

The FPGA test case is based on an measuring the total X-Ray fluorescence yield via 

Avalanche Photo Diodes (APDs) from a liquid molecule sample excited by a laser system 

synchronized to the PETRA III storage ring at MHz repetition rate [for details see: A. Britz et. 

al., J. Synchrotron Rad. (2016). 23, 1409–1423]. This setup is a test bed for future operation 

at the European XFEL measuring X-ray pulse characteristics at MHZ repetition rate. 

Description of the test case including performance requirements 

The X-ray fluorescence signal generates APD signal traces that are fed into the DAQ system 

(a microTCA based solution with high-speed digitizers; SP Devices). Each digitizer consists of 

four 12-bit analog-to-digital converters (ADCs) accompanied by a Field Programmable Gate 

Array (FPGA; Xilinx Virtex 6) for online data processing. In its standard configuration, this 

ADC is able to digitize the traces of our APD detectors at a sampling rate of 2 GS/s. 

Alternatively, it is also possible to configure the digitizer in the so-called two-channel 

interleaved mode to increase the sampling rate to 4 GS/(s channel) (which reduces the 

number of available channels to two per ADC).The repetition rate of X-Ray pulses was 7.8 

MHz and pulses were collected for processing in packets of either 40 or 60 pulses using a 130 

kHz gating. 

Decision on FPGA-based solution 

The detector outputs have been connected to ADCs and then FPGAs to process data to 

extract different information like time of flight, energy of pulses or pulse peak information 

then forwarding this output to software for more processing. 

At European XFEL digitizers from “Sweden SP-Devices Company” have been used. These 

digitizers exploit four 2 GSPS ADCs and one Xilinx Virtex 6 FPGA with PCIe connection to 

transfer data to PC. It is also possible to configure it in 2 ADCs at four GSPS. 

This technology provides remote access to digitizers for programming, upgrading and also 

monitoring which is suitable for synchrotron applications. Several different algorithms have 

been implemented in these FPGAs for on-line processing. 

With this configuration continuous extraction of the most important pulse characteristics at 

MHZ repetition rate could be obtained. 
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Algorithmic details 

Zero suppression 

The idea of zero suppression is to detect all pulses in stream of received data from ADCs and 

send pulse samples and also time of flight to the PC instead of all raw data from ADC. To find 

a pulse, a threshold should be defined to compare samples with this threshold. When a few 

numbers of samples are above this threshold a rising edge of a pulse will be reported then 

stamping the time and grabbing data will be started. This algorithm is composed of two 

parts. First part is threshold finder and is called Adaptive Threshold Filter and second part is 

pulse finder and reporter. Adaptive Threshold tracks noise level and defines Threshold 

according to noise level. Pulse finder uses output of Adaptive Threshold and compares 

stream of data with threshold. When data is above threshold that means a pulse is detected. 

 

 

 

 

 

 

Figure 1: Zero suppression reduces the sample points by selecting those points identified as signal 

data. 

Precise Peak Detection 

This algorithm is similar to zero suppression but instead of reporting time of flight and all 

samples of pulse, it reports the area which peak can happen. It acts like zero suppression to 

detect rising edge of pulses using one threshold value, and then looks for peak value in 

detected pulse. The precision of the peak value is limited by the ADC’s resolution, therefore 

an area is reported for peak value which is several samples as well as time of maximum value 

among these samples. These information are forwarded to subsequent processing steps, for 

example interpolation to get a more precise peak value. 

For detecting peak values eight samples are processed along with four other samples, two 

samples on the right side and two other samples on the left side (the reason for eight 

samples is that available digitizers provide eight parallel samples per clock cycle). These 

ancillary samples are old and new samples in time order. Differences between every other 

sample are calculated then these differences are compared to zero to find zero crossing. This 

result is valid only when the samples are above threshold.  
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For each eight samples only two peak values are detectable. Therefore for each detected 

peak four samples are reported and peak value will be the second sample from the right out 

of these four samples along with index of the peak respect to the trigger signal. 

 

 

 

 

 

 

 

Figure 2: Peak finding algorithm using a sampling area around the maximum value for later 

interpolation. 

Energy calculation  

The energy calculator is designed to perform an integration of pulse area. It depends on 

input signal and type of digitizer or even ADC’s base line, e.g the noise level is not necessarily 

zero. Therefore the value of the pulse integration should be corrected by removing the DC 

value of the base line. To do integration for both noise level and pulse area, certain areas are 

defined for both, then integration is done for these areas and finally an overall calibration is 

applied. This area is defined by first analyzing raw pulses and extracting pulse position, then 

applying this information to the FPGA algorithm. 

In other words the user has to define some parameters before starting energy calculation. 

That means raw data should be captured first and after analyzing it and extracting required 

parameters, then these parameters should be applied to the FPGA energy calculator. These 

parameters are initial delay, noise area which is start and stop points, pulse region which is 

given by the pulse start and stop and an upper limit. The difference between upper limit and 

initial delay will define the pulse repetition frequency. 

 

Figure 3: Pulse energy calculation by window selection, base line removal and pulse integration. 
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Measurement results 

Measurements at PETRA III showed that indeed the aforementioned setup was able to 

perform all operations at the design repetition rate of 7.8 MHz [for details see: A. Britz et. 

al., J. Synchrotron Rad. (2016). 23, 1409–1423]. 

Dissemination & Transfer within UFDAC / EUCALL 

 

As with every FPGA solution transfer to a different FPGA hardware can be difficult. However, 

many components of the setup such as the microTCA connection are already based on 

standards used by several partners. As such, transfer of algorithmic ideas and central parts 

of the DAQ will be discussed within UFDAC. It is foreseen to also implement the same 

algorithms on GPUs using a parallelized code from HZDR. 
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2. Test case Image Analysis / GPU 

The GPU test case deals with the conversion from raw detector data coming from the PSI 

JUNGFRAU detector to photon counts based on calibration curves obtained with a calibrated 

source. The conversion can be performed on each image individually and requires simple 

matrix operations. 

Description of the test case including performance requirements 

Each JUNGFRAU chip comprises 256x256 pixels of 75x75 µm
2
 each. These chips are arranged 

in arrays of 2x4 chips to form modules of 0.5 MPixels and about 4x8 cm
2
. Each JUNGFRAU 

module connects to a JUNGFRAU Module Control Board (JMCB) that controls the JUNGFRAU 

chips during the readout phase, see Figure 4. 

The main component of the JMCB is an Altera Cyclone V Field Programmable Gate Array 

(FPGA), that acquires the digital output of the chip (employed gain bits) and the digital 

output of the 32 ADC channels that carry out the conversion of the analog output from the 

pixels (deposited charge). 

The whole stream of data (digital and analog) is properly descrambled to obtain a contiguous 

image that is later streamed out to the user server via 2x10 GBps links. The readout 

capability of the JMCB is designed to sustain readout rates of 2000 frames/s. 

By arranging several of these modules it is possible to build detector systems of several 

Mpixels. More specifically, multi-module systems of up to 16 Mpixels consisting of 32 

JUNGFRAU modules are planned for various experimental setups, with a net output data-

stream of 80 GBps. 

The data streamed out for every pixel consists of the digitized value of the deposited charge 

plus the coding of the employed gain stage together in a 16-bit word. 

However, data scientists need to process this output stream of data to obtain meaningful 

information. In fact, what scientists need is a photon image to do their research, that is, a 

photo with the number of photons recorded per pixel. 

The conversion to number-of-photons is simple but has to be carried out for every single 

pixel and with parameters that vary from pixel to pixel. These parameters are the actual gain 

for each gain stage and the offset due to noise and leakage which also varies from gain stage 

to gain stage. 
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Figure 4: Image of one JUNGFRAU detector module with its JMCB. 

 

Decision on GPU-based solution 

Currently, this conversion from charge to number-of-photons is carried out offline, but an 

on-line processing would have several benefits apart from the reduced CPU usage, for 

instance: 

• Perform further on-line signal processing. 

• Carry out on-line data compression to reduce both throughput and storage 

requirements, 

since number-of-photon data can be better compressed. 

All these sets of parameters per pixel can be grouped in 6 maps per JUNGFRAU module, 

namely 3 gain maps plus 3 offset (pedestal) maps. When coding this parameters in 16-bit 

words, all this information adds a total of 6MB of data that needs to be accessed at a rate of 

2 kHz, which sets the focus not only on the processing time, but also on the memory 

bandwidth. 

Given the high capabilities in parallel computation, high memory bandwidth and scalability 

to work with bigger detector systems, GPUs seem to be the best alternative to carry out this 

task. Moreover, adding future capabilities such as online compression of the pixel data could 

be implemented easily.  
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Algorithmic details 

 

Figure 5: Gain stages (ADC count vs. integrated charge) 

The detector gain is divided in three stages G0, G1 and G2, see Figure 5. For computing the 

photon number, the pedestal maps correction CCorr are computed from the ADC values 

DADC and the pedestal maps P0, P1 and P2: 

G0: Ccorr[x,y] = DADC[x,y] – P0[x,y] 

G1: Ccorr[x,y] = P1[x,y] - DADC[x,y] 

G2: Ccorr[x,y] = P2[x,y] - DADC[x,y] 

and then the gain maps Ecal are computed from the gain curves Gain0, Gain1 and Gain2 and 

the pedestal maps corrections 

G0: Ecal[x,y] = Ccorr[x,y] * Gain0[x,y] 

G1: Ecal[x,y] = Ccorr[x,y] * Gain1[x,y] 

G2: Ecal[x,y] = Ccorr[x,y] * Gain2[x,y] 

For the GPU-based solution a concurrently accessible ring buffer was implemented on the 

host side (CPU) which can be accessed for writing and reading. The detector data is copied to 

the GPU and these copies are interleaved with computations on the GPU, effectively hiding 

the latency of the copying process. For this, asynchronous kernel calls and asynchronous 

memory copies with CUDA streams and pinned memory are used. 
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Measurement results 

 

 

Table 1: Memory transfer rate (throughput) from host (CPU) to device (GPU). Except for the very 

first few images the throughput is always close to the maximum value achievable with PCIe. 

 

 
 

Table 2: Throughput for memory transfer of processed data from GPU to CPU. Again, the 

theoretical PCIe bandwidth can be reached. 

All performance measurements were performed on a single NVIDIA K80 GPU connected to 

host memory via PCIe Gen 3. 

Both memory transfer of input data from the CPU host memory to the GPU memory and 

processed data from the GPU back to the CPU reach the maximum achievable PCIe transfer 

rate of 12 GB/s due to hiding the latency of the memory copy by using CUDA streams to 

overlap computation and memory transfer, see Tables 1+2. 

In comparison, the duration of the algorithm for computing the gain maps Ecall from the raw 

ADC data takes on average less than 25 µs per image, see Table 3. This means that the 
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current single GPU solution is limited by the PCIe bandwidth available. Already today new 

interconnects such as NVLink are available that can reach more than ten times PCIe Gen. 3 

throughput this limitation is likely to vanish. However, this example makes clear that there is 

potential for more complex operations on the data before reaching the minimum 

throughput acceptable. 

In the current example the initial requirement of reaching a throughput of 6MB at 2 kHz rate 

comes close to the throughput limit given by the PCIe interconnect. The algorithm itself can 

be trivially scaled to accommodate for higher rates by adding more GPUs, as the 

computational demand scales linearly with the data rate. This makes it easy to adapt to 

larger detector setups comprising of multiple JUNGFRAU detector modules. 

 

 

Table 3: Duration of the algorithm computing Ecall for 1000 JUNGFRAU module images of 

512x1024 pixels size. 

 
Dissemination & Transfer within UFDAC / EUCALL 

The current implementation of the algorithm in CUDA C was developed as a joint EUCALL 

project between PSI and HZDR. The code is open source based on the GPL vers. 3. ELI-ALPS 

has expressed interest in using the code base for their own application. 

In order to foster transfer to other EUCALL partners we plan to scale the code to multiple 

GPUs and multiple nodes using the CRACEN library developed at HZDR and port the CUDA 

version to other architectures using the ALPAKA library developed at HZDR. 

 
 


