

# **The European Cluster of Advanced Laser Light Sources**

### Graham Appleby – European XFEL







### **Overview**

- Foundation and description of EUCALL
- EUCALL goals and objectives
- EUCALL Work Packages
- EUCALL Young Researcher Travel Bursaries
- Summary





# The situation (I)

- ESFRI photon-science projects
  - ELI
  - ESRF
  - European XFEL
- Networks
  - Laserlab-Europe (LLE)
  - FELs of Europe (FoE)
- National RIs







# The situation (II)

- Accelerator-based RIs (SR, FEL)
  - Successful and large user program
  - Increasing complexity (OLs, FELs, ...)
  - X-rays reach diffraction limit & non-linear regime
  - Optical laser methods applied
- Optical-laser based RIs (ELI, LLE faci.)
  - New and ramping up
  - New schemes to create X-rays
  - X-ray methods provided to users













# The situation (III)





![](_page_4_Picture_5.jpeg)

SR RIs

# FEL RIs

OL RIs

Low emittance electron accelerators

X-ray methods and techniques

User programs

Ultrafast and non-linear science

**Optical laser methods** 

Optical laser (high energy, fs)

Data issues (volume, policies)

![](_page_4_Picture_16.jpeg)

![](_page_4_Picture_18.jpeg)

![](_page_4_Picture_19.jpeg)

![](_page_5_Picture_0.jpeg)

# The situation (IV)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_5_Picture_5.jpeg)

### SR RIs

### FEL RIs

OL RIs

### RIs to support scientific exploitation by users from multiple domains

Atomic & molecular sciences

**Condensed-matter** 

**Materials Sciences** 

Chemistry

**Structural biology** 

Geo- & planetary science

**Cultural heritage** 

**Optical & high-field sciences** 

#### **Medical applications**

**Medical applications** 

![](_page_5_Picture_20.jpeg)

![](_page_5_Picture_23.jpeg)

![](_page_6_Picture_0.jpeg)

# **Foundation of EUCALL**

- Overlap between optical laser light sources and accelerator based X-ray light sources has been limited due to
  - different photon energies
  - different scientific applications
  - different character of the light source installations
- Optical lasers have become powerful enough to drive intense secondary sources of coherent and incoherent X-rays
  - new RIs for user access being developed
- X-ray FELs combine the properties of optical lasers with X-ray radiation, plus provide unprecedented X-ray brightness
- EUCALL formed to address the emerging overlap of scientific applications of laser and X-ray light sources

![](_page_6_Picture_11.jpeg)

![](_page_6_Picture_14.jpeg)

![](_page_7_Picture_0.jpeg)

### **European Cluster of Advanced Laser Light Sources**

### **EUCALL** is a network between large-scale user facilities for:

- Free electron laser (FEL) radiation
- synchrotron radiation
- optical laser radiation

### Under EUCALL, they work together on:

- common methodologies and research opportunities
- tools to sustain this interaction in the future

### Facts and figures:

- 7M€ from Horizon 2020 for project period 2015 2018
- 11 partners from nine countries, and two further clusters

![](_page_7_Picture_13.jpeg)

![](_page_7_Picture_15.jpeg)

![](_page_8_Picture_0.jpeg)

### **European Cluster of Advanced Laser Light Sources**

![](_page_8_Figure_2.jpeg)

EUCALL's six FEL and synchrotron sources and five optical light facilities (red pins). Countries involved in the European clusters FELs of Europe and Laserlab-Europe are coloured.

![](_page_8_Picture_4.jpeg)

**EUCALL** 

![](_page_9_Picture_0.jpeg)

# **EUCALL's Strategic Goals and Objectives**

### Goals

### **Objectives**

Develop & implement cross-cutting services for photon-oriented ESFRI projects.

Optimize use of advanced laser light sources in Europe.

Stimulate & support common long-term strategies & research policies Analyze & promote efficient use of facilities

Identify & develop combined research potential

Analyze & promote innovation potential by the ensemble of facilities

Identify joint foresight topics in science & research policy

**Develop & implement a simulation platform** 

Develop ultrafast data acquisition

Develop ultrafast sample handling systems

Develop advanced beam diagnostics

WP 4 - WP 7

European

m

WP

![](_page_9_Picture_17.jpeg)

![](_page_10_Picture_0.jpeg)

### **WP4 - SIMEX: Simulation of Experiments**

![](_page_10_Figure_3.jpeg)

#### https://github.com/eucall-software

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_11_Picture_0.jpeg)

### **WP5 - UFDAC: Ultrafast Data Acquisition**

#### European XFEL pulse train

![](_page_11_Figure_4.jpeg)

![](_page_11_Picture_5.jpeg)

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

European

![](_page_12_Picture_0.jpeg)

#### Sample Pre-Investigation Workflow

![](_page_12_Picture_2.jpeg)

Sample automatically screened via microscope and points of interest identified and logged.

![](_page_12_Picture_4.jpeg)

From the generated coordinates, sample is raster scanned at 10 Hz at beamline for analysis.

By Carsten Deiter (XFEL.EU)

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_10.jpeg)

![](_page_13_Picture_0.jpeg)

### WP6 - HIREP: High Repetition Rate Sample Delivery

# A standard sample holder including cooling and heating capacities – to be used by all participating institutes and their users

- integrated with high precision sample stages
- ultrahigh vacuum–compatible fluorescence and reflection microscope for sample positioning

#### Automatic sample identification and localization software

- to control the sample stage
- available for all institutes to be integrated in their instrumentation

#### Milestones already achieved:

- Specification for sample holder and sample stages (Nov 2015)
- List of sample types for identification software compiled (Jan 2016)
- Specification of the UHV microscope (Mar 2016)

![](_page_13_Picture_13.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

Undulator

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_15_Picture_0.jpeg)

### **European Cluster of Advanced Laser Light Sources**

### **EUCALL Work Packages**

- WP1 **Management** of the EUCALL Project
- WP2 Dissemination and Outreach
- WP3 **Synergy** of Advanced Laser Light Sources

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_16_Picture_0.jpeg)

### WP3 – Synergy of Advanced Light Sources

- Analyze & promote efficient use of facilities
- Identify & develop combined research potential
- Analyze & promote innovation potential by ensemble of facilities
  - Collect information from RIs about: science applications, techniques/methods, available instrumentation, operational matters (beamtime allocation and scheduling, procedures)
  - Cross-community activities; experience exchange; joint (user) training
  - Analyze & develop suggestions for future collaboration
- Identify joint foresight topics in science & research policy
  - New science & technology applications using OL and X-ray background and expertise
  - Sustained collaboration
  - (to be identified) ...

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

![](_page_16_Picture_14.jpeg)

17

![](_page_17_Picture_0.jpeg)

# **EUCALL Young Researcher Travel Bursaries**

 EUCALL provided 10
Young Researcher Travel bursaries for the
ELI Summer School

![](_page_17_Picture_4.jpeg)

INIVITATION TO ELI AND HILASE SUMMER SCHOOL (ELISS 2016)

DOLNÍ BŘEŽANY, THE CZECH REPUBLIC

21.8. 2016 - 26.8. 2016

 EUCALL will provide 23
Young Researcher Travel bursaries for the Science@FELs Conference

![](_page_17_Picture_9.jpeg)

![](_page_17_Picture_10.jpeg)

![](_page_17_Picture_12.jpeg)

![](_page_18_Picture_0.jpeg)

### Summary

- EUCALL addresses technological overlap between SR, FEL and OL RIs
- EUCALL develops standardised software and hardware tools for
  - Simulation of Experiments
  - Ultrafast Data Acquisition
  - High Repetition Rate Sample Delivery
  - Pulse Characterisation and Control
- Synergy WP will foster new collaboration between RIs
- Young Researcher Travel Bursaries for Conferences and Summer Schools
- 1st Annual Meeting 31 Aug 2 Sept 2016
- Collaboration already successful after ten months

![](_page_18_Picture_13.jpeg)

![](_page_19_Picture_0.jpeg)

# Thank you for your attention

# www.eucall.eu / contact@eucall.eu

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220 21

![](_page_21_Figure_0.jpeg)

![](_page_21_Picture_1.jpeg)

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

European

XFE

![](_page_22_Picture_0.jpeg)

### **EUCALL Interaction between the WPs**

![](_page_22_Figure_3.jpeg)

![](_page_22_Picture_4.jpeg)

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220 European XFEL

![](_page_23_Picture_0.jpeg)

### WP4 - SIMEX: Simulation of Experiments

Develop and implement a simulation platform for experiments at the various RIs.

#### Organization

WPL: XFEL.EU (36 PM); WPC: HZDR (36 PM); participants: DESY (36 PM), ELI (36 PM), ESRF (36 PM)

#### Activities/tasks

- Delivery of individual sim. modules & common interfaces for interoperability
- Simulation from source to signal
- Test and validate modules and workflow, including HPC workflow

#### Deliverables

 2 design reports (M12); Interoperability (M24); Simulated data for plasma experiments (M24); Testing, validation & example workflow (M36)

![](_page_23_Picture_12.jpeg)

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

Graham Appleby, European XFEL, 29/08/2016 EUCALL Satellite Workshop, HZDR

![](_page_23_Picture_15.jpeg)

![](_page_24_Picture_0.jpeg)

### WP5 - UFDAC: Ultrafast Data Acquisition

Ultrafast online image processing, data transfer and injection, and processing of digitiser data for femtosecond/attosecond photon sources.

#### Organization

WPL: HZDR (36 PM); WPC: XFEL.EU (36 PM); participants: DESY (12 PM), ELI (42 PM), ESRF (24 PM), PSI (48 PM)

### Activities/tasks

- Online 2D image processing
- High-speed data transfer and data injection
- Online processing of digitizer data

#### Deliverables

 Report Online 2D image processing (M36); Report High-speed data transfer and data injection (M36); Report Online processing of digitizer data (M36)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_15.jpeg)

![](_page_25_Picture_0.jpeg)

### **WP5 - UFDAC: Ultrafast Data Acquisition**

#### Tasks

Development of FPGA and GPU programming as part of the DAQ chain for the

- Acquisition and online processing of data
- Quality enhancement
- Data compression
- Treatment techniques (e.g. image and pulse analysis, vetoing, selection, correlation)

This takes place at the front-end detector electronic and optionally connected GPUs before the Computing and Storage clusters.

• Joint development of high-speed data interfaces and injection techniques to allow online processing and transfer to following analysis and storage clusters.

![](_page_25_Picture_11.jpeg)

![](_page_25_Picture_13.jpeg)

![](_page_25_Picture_14.jpeg)

![](_page_26_Picture_0.jpeg)

### **UFDAC Data Structures and Interfaces**

Definition of a set of common working points to address within UFDAC

- All data formats fall into one of the two categories of image data or digitizer data.
- Fast data processing will be done via FPGA- or GPU-based solutions or a mix thereof.
- For this, all applications of all partners are ready to share solutions that are based on C/C++/Python/VHDL.
- For fast data injection, (remote) direct memory access is of great interest.
- Yet, the scalability of the DAQ chain has to be addressed as it is necessary for future data rates to maximize both bandwidth and scalability.
- A starting point for scalable solutions will be data injection and subsequent analysis based on standard network hardware and protocols rather than application-specific hardware and protocols. Solutions favoring TCP/IP, UDP and Infiniband can be shared among the partners
- Yet, PCIe and MicroTCA will be considered when developing solutions for (remote) direct memory access
- (Parallel) HDF5 is the de-facto standard for file input/output used among all partners and can form the basis for defining common meta data formats that describe a minimum set of common scientific data and DAQ data for use by common software solutions.

![](_page_26_Picture_12.jpeg)

![](_page_26_Picture_15.jpeg)

![](_page_27_Picture_0.jpeg)

# WP6 - HIREP: High Repetition Rate Sample Delivery

Integrated concept for decentralised sample characterisation and fast sample positioning for all RIs

#### Organization

WPL: ELI (24 PM); WPC: XFEL.EU (24 PM); participants: DESY (24 PM), HZDR (12 PM), LU (24 PM)

#### Activities/tasks

- Automatic sample screening
- Position control

#### Deliverables

 Design report (M13); Prototype (M18); Beta version sample identification software (M18); Report on EMP compatibility (M24); Prototype (M30); Prototype (M30); Release sample identification software (M36); Final integration (M36)

![](_page_27_Picture_11.jpeg)

![](_page_27_Picture_14.jpeg)

![](_page_28_Picture_0.jpeg)

# **HIREP Sample Holder / Stage 1**

Periodically placed or manufactured targets on a support / substrate of equal or similar shape

- foils placed in a sandwiched holder with holes / windows
- flat cones of 10s of μm tip and 100s of μm base (lithography)
- micro dots with a size from 1 μm 100 μm
- reduced mass and nanostructured targets
- μm sized biological samples positioned by pick-and-place
- wires spanned across μm sized holes / windows

![](_page_28_Picture_10.jpeg)

29

![](_page_29_Picture_0.jpeg)

# HIREP Sample Holder / Stage 2

### Statistically distributed targets on a support / substrate

- dried out suspension with sphere shaped single particles or clusters of them
- self-organized growth of metallic / semiconductor / insulator micro structures
- solid foams of two chemical components with open surface / pores
- crossing points inside of ravels of filament like materials (nano / micro wires / fibers)

![](_page_29_Picture_8.jpeg)

![](_page_30_Picture_0.jpeg)

# HIREP Sample Holder / Stage 3

### Homogenous materials with defects / cracks / discontinuities

- metallic glasses like GeO<sub>2</sub>, SiO<sub>2</sub>(80%)+Na<sub>2</sub>O<sub>2</sub>(20%)
- thin films of metal / semiconductor / insulator materials on metal / semiconductor / insulator substrates
- thin films of metal / semiconductor / insulator materials structured with metal / semiconductor / insulator nano and micro structures

![](_page_30_Picture_7.jpeg)

![](_page_31_Picture_0.jpeg)

# **HIREP UHV Microscope**

- The microscope should be vacuum compatible and allow use in an UHV environment (pressure: < 10<sup>-6</sup> mbar).
- The microscope should be mounted on a CF-flange for easy exchange. The design should be as compact as possible.
- For fine positioning the microscope can be positioned as a single unit (optics and CCD camera) with an accuracy of better than 1 μm and a travel range of > 2 mm in x,y,z direction.
- The CCD camera should be placed outside vacuum at atmospheric pressure, the microscope objective will be placed in vacuum.
- Separation between vacuum and atmospheric pressure will be achieved by placing a vacuum window in the infinitely corrected optical beam path.
- The microscope should be based on on-axis viewing in order to avoid parallax errors.

![](_page_31_Picture_9.jpeg)

![](_page_32_Picture_0.jpeg)

# **HIREP UHV Microscope 2**

- As an option it should be possible to exchange the microscope objective if required.
- The field of view should be more than 0.3 x 0.3 mm.
- An optical resolution of better than 1  $\mu m$  is required aiming at sub-micrometer positioning accuracy.
- The depth of field should be limited to less than 10  $\mu m$  as this will be used for alignment of the target in the beam direction.
- For fluorescence microscopy the design should allow to place different filters into the beam path. The system should be compatible with different illumination sources.

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_11.jpeg)

![](_page_33_Picture_0.jpeg)

### **WP7 - PUCCA: Pulse Characterisation and Control**

Pulse arrival time monitors with fs time resolution, wavefront sensor and analysis software, and a transparent intensity monitor

#### Organization

WPL : DESY (36 PM); WPC: XFEL (36 PM); participants: ELETTRA (24 PM), ELI (12 PM), ESRF (24 PM), HZDR (36 PM), PSI (0 PM)

### Activities/tasks

- Delivery of arrival time monitors between two independent pulsed light sources with femtosecond time resolution
- Development of a wavefront sensor and analysis software
- Precise transparent intensity monitor

#### Deliverables

Report (M12); Report (M15); Report (M18); Prototype (M30); Prototype (M36);
Prototype (M36); Report (M36); Software manual (M36); Report (M36)

![](_page_33_Picture_12.jpeg)

![](_page_33_Picture_15.jpeg)

![](_page_34_Picture_0.jpeg)

### **WP7 - PUCCA: Arrival Time Monitors**

# Task 7.1 - Delivery of arrival time monitors between two independent pulsed light sources with femtosecond time resolution

#### Task 7.1.1 Accelerator-based arrival time monitor:

Use of intense THz radiation generated e.g. at the exit of the last undulator to drive an electro-optic sampler, which is transmitted by an extremely chirped white light pulse from the second laser source (HZDR, PSI).

**Task 7.1.2 Liquid-jet based arrival time monitor:** (Nearly) co-propagate both light pulses (one remaining ultrashort, the other chirped-stretched to a few picoseconds) through a liquid flat sheet jet, doped with selected chromophores which react efficiently to the wavelength of the ultrashort light pulse (XFEL, ELI).

**Task 7.1.3 Combine both tools** at one EUCALL RI to correlate and deselect pulses at the second device, when they are outside its timing window (HZDR, XFEL, ELI, PSI)

![](_page_34_Picture_8.jpeg)

![](_page_35_Picture_0.jpeg)

### WP7 - PUCCA: X-ray Intensity Gas Monitor

**Task 7.3.1 Analysis of X-ray intensity monitors based on gas ionisation** (DESY): study of the ultimate uncertainty achievable with transparent XGM for EUCALL RIs, design study of optimized XGM design for XFEL.

![](_page_35_Figure_4.jpeg)

#### Task 7.3.2 Construction and test of a prototype X-ray intensity monitor (DESY).

Optimised for intensity measurements of hard X-rays with ultimate precision, test at XFEL or LCLS; at ELI sources and other FELs as much as possible.

![](_page_35_Picture_7.jpeg)

![](_page_36_Picture_0.jpeg)

#### Task 7.2 Development of a wavefront sensor and analysis software

![](_page_36_Figure_2.jpeg)

Use the speckle as markers and track the trajectory of the X-rays S. Berujon, ESRF *DLSR 2016 Workshop, DESY* 

- Prototype speckle tracking wavefront sensor developed for ESRF
- For transferability to XFEL a non-invasive device is needed.
  - Non-invasive wavefront sensor upstream from the sample based on two semitransparent screens
  - An invasive wavefront sensor behind the sample
- Sensor for x-ray repetition rate higher than 40 Hz will be examined

![](_page_36_Picture_9.jpeg)

37