


# **Targetry in ELI-ALPS**

## Csaba Vass

2016.08.30.



European Regional **Development Fund** 



INVESTING IN YOUR FUTURE



Introduction

### ELI-ALPS

- Scientific infrastructure
  - Primary sources
  - Secondary sources

Target needs

- GHHG
- SHHG
- Particle acceleration

**Target laboratory** 

## **ELI-ALPS – main parameters**

- Laser facility with sources spanning an extremely broad range from THz to X-rays
- Femtosecond, near-infrared laser pulses, with an unprecedented combination of parameters, will drive various secondary sources resulting in
  - terahertz (THz)

i ei

- mid-infrared (MIR)
- ultraviolet (UV)
- extreme ultraviolet (XUV)
- X-ray radiation
- Pulse durations: from picoseconds (10<sup>-12</sup> s), femtoseconds (10<sup>-15</sup> s) down to attoseconds (10<sup>-18</sup> s)
- Repetition rate: 10 Hz 100 kHz

## **ELI-ALPS** – applications

- Attosecond tools for chemistry, biology and nanoscience
  - time-resolved of intra-atomic (-molecular) electron dynamics
- Biological imaging applications
  - high resolution nanometer imaging of biological material
- Bio-medical applications

ei

- Imaging (phase contrast shadowgraphy or 3D tomography by coherent X-ray beams)
- Energy research (Solar cells to artificial photosynthesis)
  - real-time imaging and investigations in a time-resolved manner for materials and processes of advanced solar cell and battery applications
- High-power photonics
  - upscaling high-power short-pulse laser systems for industrial partners
- Information technology, materials science and nanoscience
  - nanoscale spatial resolution
- THz technologies and applications

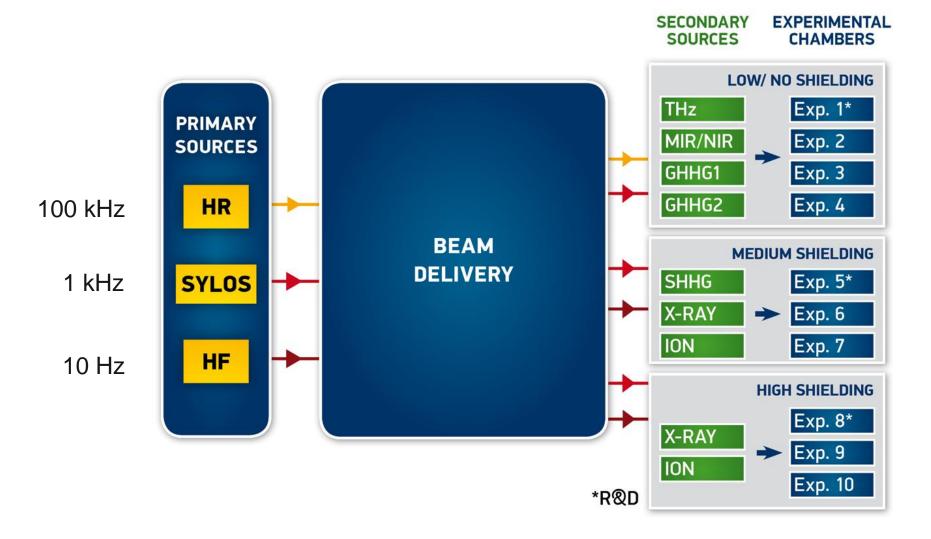
## **ELI-ALPS – external view**





∭eli




## **ELI-ALPS** – internal view



∭eli



### Scientific infrastructure



## **Scientific infrastructure**

|                                                |                 | PRI                        | ARY SOURC | ES (lasers)     |                         |                   |                                                      | SI                                | ECONDAR                              | Y SOURCES              | S                                                                                |
|------------------------------------------------|-----------------|----------------------------|-----------|-----------------|-------------------------|-------------------|------------------------------------------------------|-----------------------------------|--------------------------------------|------------------------|----------------------------------------------------------------------------------|
|                                                | Laser<br>system | Peak /<br>average<br>power | Rep.rate  | Pulse<br>energy | Pulse<br>duration       | Spectral<br>range | UV / XUV                                             | X-ray                             | lons                                 | Electrons              | THz                                                                              |
| m January<br>mber 2017)                        | ALPS-HR         | > 0.1 TW / 100<br>W        | 100 kHz   | 1 mJ            | < 7 fs<br>(CEP stable)  | 0.3 - 1.3 µm      | 12-300 nm<br>4-100 eV/10-1<br>nJ                     |                                   |                                      |                        |                                                                                  |
| Stage 1 (from January<br>2016 – December 2017) | SYLOS           | > 2 TW / 20 W              | 1 kHz     | 20 mJ           | < 10 fs<br>(CEP stable) | 0.5 - 1.3 µm      | 10 - 400 eV,<br>120 - 3 nm,<br>0.4 µJ - 4 pJ<br>GHHG |                                   |                                      |                        | FIR/THz: 0.3-3 THz,<br>100 µm-1 mm,<br>1.24-12.4 meV / 10 µJ, 3<br>MV/cm         |
| Stage 2<br>(from January 2018)                 | ALPS-HR         | > 1 TW / 500<br>W          | 100 kHz   | 5 m J           | 5 fs<br>(CEP stable)    | 0.3 - 1.3 µm      | 12-300 nm<br>4-100 eV/<br>50-5 nJ                    |                                   |                                      |                        |                                                                                  |
|                                                | SYLOS           | > 20 TW / 100<br>W         | 1 kHz     | 100 mJ          | < 5 fs<br>(CEP stable)  | 0.5 - 1.3 µm      | 10 - 1000 eV,<br>120 - 1.2 nm,<br>10 µJ - 10 nJ      |                                   | -                                    | 50-100 MeV,<br>5-10 pC | FIR/THz: 0.3-3 THz,<br>100 µm-1 mm,<br>1.24-12.4 meV / >1 mJ,<br>up to 100 MV/cm |
|                                                | ALPS-HF 100     | > 40 TW / 50 W             | 100 Hz    | 0.5 J           | < 12 fs                 | 0.5 - 1 µm        | 10 - 1000 eV,<br>120 - 1.2 nm,<br>0.5 mJ - 2.5 µJ    | 1-5 keV,<br>1.2-12 A/<br>< 0.3 µJ | Protons:<br>up to<br>160 MeV<br>1 nC | 2 GeV,<br>0.2 nC       | -                                                                                |
|                                                | ALPS-HF PW      | > 2 PW / 200 W             | 5 Hz      | 40 J            | < 20 fs                 | 0.7 – 0.9 µm      | 10 - 1000 eV,<br>120 - 1.2 nm,<br>1 mJ - 5 µJ        | 1-5 keV,<br>1.2-12 A/<br>< 0.5 µJ |                                      |                        |                                                                                  |

## **Targetry in ELI-ALPS**

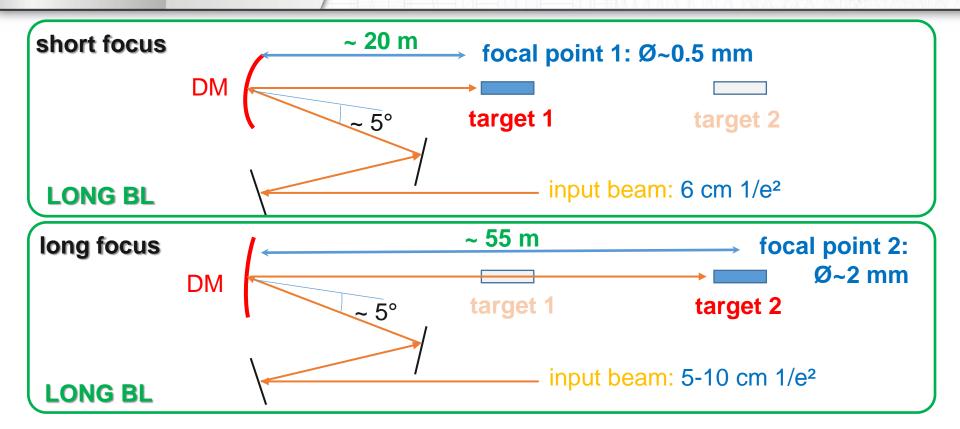
Targets for Secondary sources and Particle acceleration – include the delivered sources

Receive the needs from secondary sources divisions (e.g. GHHG, SHHG, particle acceleration)

...in progress...

ei

Have to decide in house vs. outsourcing


Individual, micro- and nanostructured targets - in house vs. outsourcing

...under discussion...

Gas targets: well developed

Targets for SHHG and particle acceleration: R&D necessary

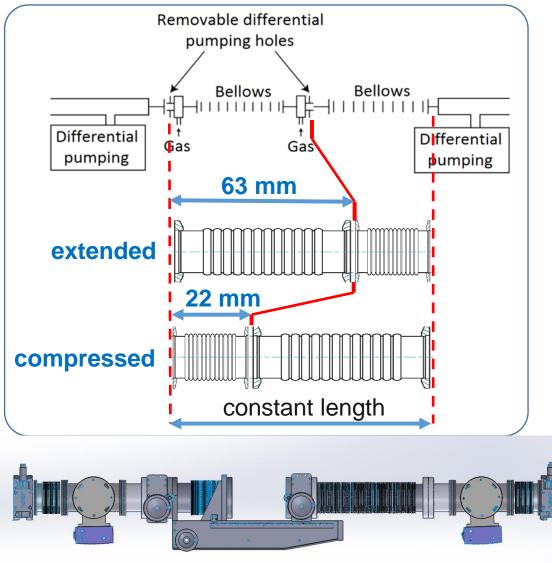
## SYLOS LONG beam line (1 kHz)



#### SYLOS laser specs (1 kHz)

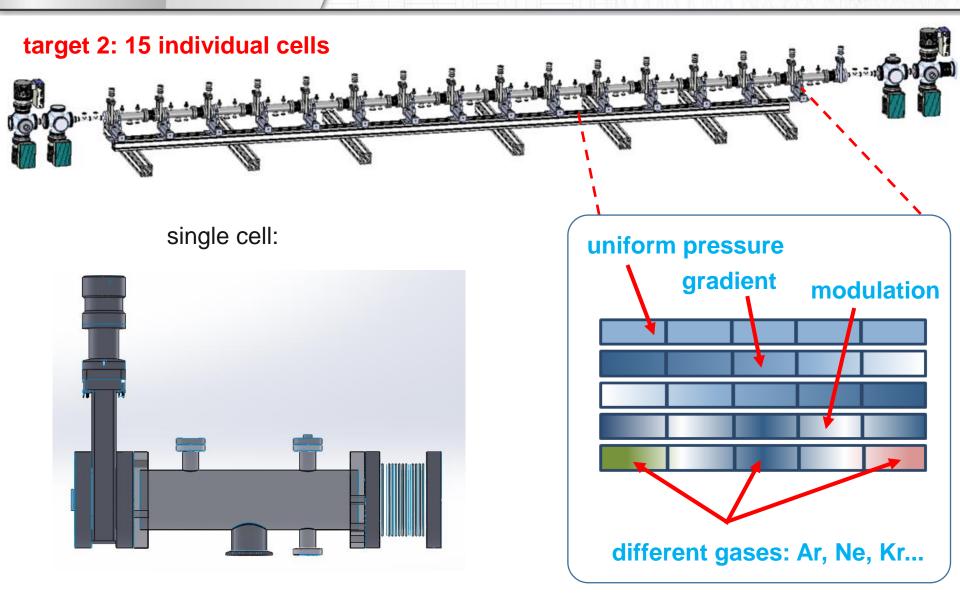
**e**li

| Parameter      | Phase 1/2           |  |  |
|----------------|---------------------|--|--|
| Pulse energy   | 45/100 mJ           |  |  |
| Pulse duration | 3 cycles/1.5 cycles |  |  |
| Spectrum [nm]  | 700-1200            |  |  |

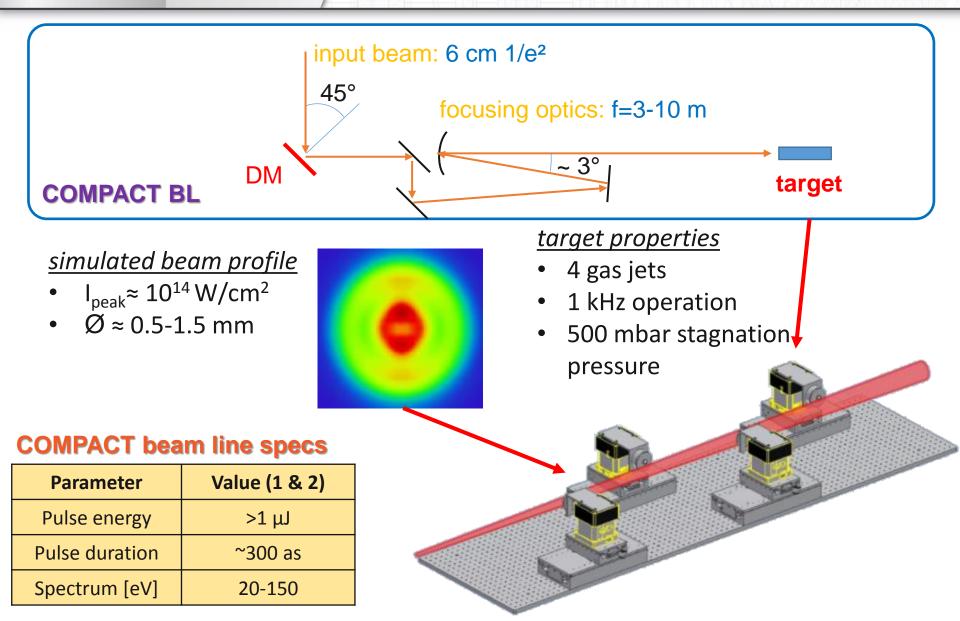

#### LONG beam line specs

| Parameter      | Value (1 & 2) |  |  |
|----------------|---------------|--|--|
| Pulse energy   | >1 µJ         |  |  |
| Pulse duration | ~300 as       |  |  |
| Spectrum [eV]  | 20-150        |  |  |

#### Variable length gas cell (SYLOS LONG) 1 kHz

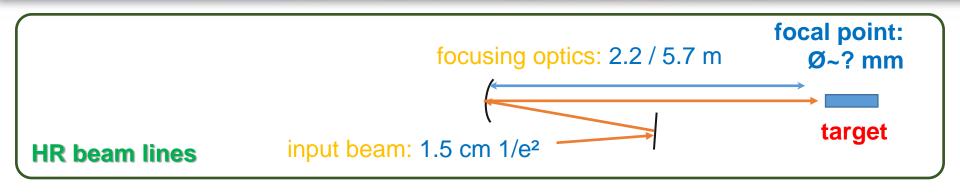

target 1: single, adjustable length cell

**e**li




Pressure: 0.1-15 mBar Gases: noble gases

### Gas cell chain (SYLOS LONG) 1 kHz




#### SYLOS COMPACT beam line 1 kHz



I eli

#### HR GAS and HR CONDENSED 100 kHz

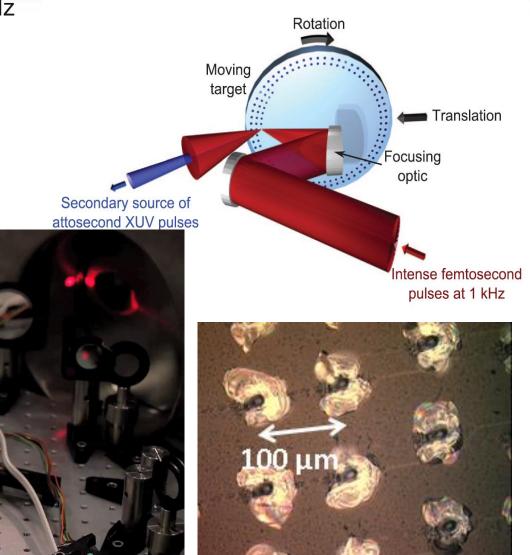


#### target properties

- static cell
- laser-drilled pin holes
- ? mbar pressure

#### HR laser specs (100 kHz)

**e**i


| Parameter      | Phase 1/2           |  |  |
|----------------|---------------------|--|--|
| Pulse energy   | 1.5/5 mJ            |  |  |
| Pulse duration | 3 cycles/1.5 cycles |  |  |
| Spectrum [nm]  | 800-1200            |  |  |

#### **GAS/CONDENSED beam line specs**

| Parameter      | Value (1 & 2) |  |  |
|----------------|---------------|--|--|
| Pulse energy   | >100 pJ       |  |  |
| Pulse duration | ~300 as       |  |  |
| Spectrum [eV]  | 17-100        |  |  |

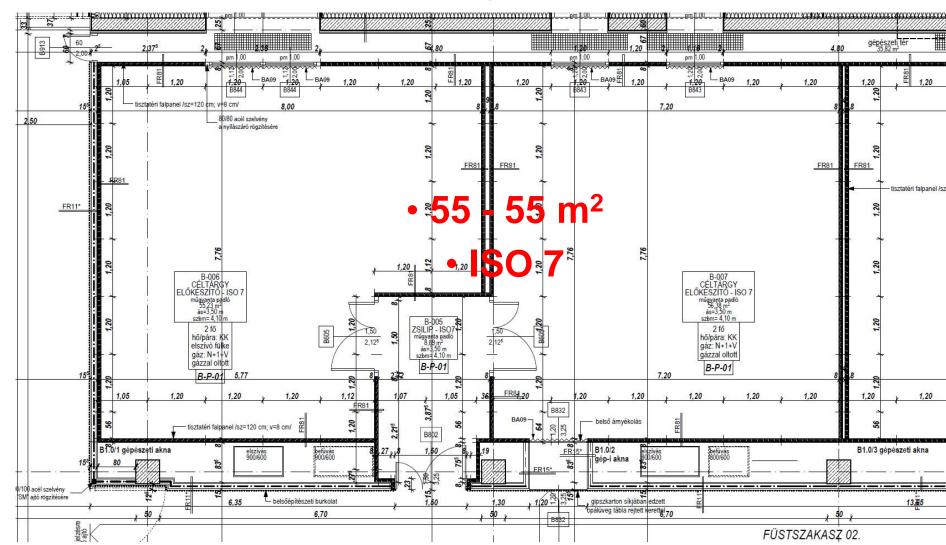
### SHHG target

- Advantages: working solid state 1 kHz target + PM
- Disadvantages: Long reload time
- Difficulties: Debris generation
- Under development (in LOA)
- Further R&D necessary



## **Proton acceleration**

### **Under specification**


**e**li

- submicron foil in single-shot mode
- few-micron foil in high rep-rate (>1 Hz) mode

#### **R&D** necessary

### **Target laboratory**

#### Specification of instruments and strategy: till the end of this year (after receiving of the specifications of secondary sources)





# THANK YOU FOR YOUR ATTENTION!





**European Union** European Regional Development Fund



Hungarian Government

INVESTING IN YOUR FUTURE