

Laser-induced dynamic compression at ESRF

Sakura Pascarelli European Synchrotron Radiation Facility sakura@esrf.fr

THE ESRF

- Société civile under French law
- 20 countries
- 650 staff
- ~ 100 M€ annual budget

- Construction 1988-1994
- First users in 1994
- 844 m circumference
- 6 GeV
- 42 beamlines
- 6000 users/year
- 1800 publications/year

SYNCHROTRON RADIATION

HIGH PRESSURE SCIENCE AT ESRF TODAY

ID06, ID15, ID27 : X-ray Diffraction – Structure, Crystallography, Strain, Deformation, ...

ID18: Nuclear Resonance Scattering - Magnetism, Phonons

ID20: Resonant Inelastic X-ray Scattering - Electronic and Magnetic Structure

ID12, BM23, ID24: XAS, XMCD - Local and electronic structure, Magnetism, ...

STATIC COMPRESSION AT SYNCHROTRONS TODAY

Nuclear Resonance Scattering Single Crystal XRD External magnetic field NRS spectrum of 119Sn in H₂S 119Sn foil H₂S 59 K 153 GPa DAC H ext = 0.68 TDelayed y-rays from the Pulsed 1195n Mössbauer synchrotre radiation counts (a.u) Magnetic field Magnetic flux at the ¹¹⁹Sn sensor is 0 20 60 80 100 Troyan Science 2016 40 Spaulding Nature Comm. 2014 t (nsec)

GOING BEYOND THE LIMIT OF STATIC COMPRESSION

Static compression with LH–DAC covers Earth's core conditions

~ 360 GPa, 5500 K

- 1. What is the stability limit of hcp phase in solid Fe?
- 2. What is the local structure in the liquid ?
- 3. What is the nature of ion-ion correlations in the WDM regime ?

Can we create and probe WDM at the synchrotron, with data quality as "at ambient" ?

PUSHING THE FRONTIERS

□ Go more extreme \rightarrow TPa & eV

Conditions beyond those existing in our planet \rightarrow Input for planetary models

Synthesis of novel materials Reveal new physical chemistry

Particle ejection

ENSMA Poitiers

 \Box Explore the time scale of high pressure phenomena \rightarrow ns

Dynamic behavior of matter and materials under high strain rates

- Mechanisms and nucleation of phase transitions
- Yield strength (dynamics of dislocations)
- Nanostructuration, amorphisation, metastable phases

Heterogeneous media

ESRF

ISP Imperial London

The European Synchrotron

DYNAMIC COMPRESSION WITH HIGH POWER LASER

P& T can be maintained relatively constant in time (ns) and space using special confinement by target design.

 fs
 ps
 ns

 energy transfer from excited e- to nuclei
 excited e- to nuclei

 • extreme states of solid matter at T>> T_{melt} in few ps (highly metastable state)
 • equilibrium thermodynamical state

 • study instantaneous effect of changes in edistribution on interatomic potential
 • study samples at very high P and T (~ TPa, ~ eV)

 OUT OF EQUILIBRIUM
 LOCAL THERMAL EQUILIBRIUM

- 1. Timescale of excited state must match time resolution of X-ray probe
 - ~ ns → Target design

2. Single shot

Do we have enough photons? → Target design What techniques (XRD, XRI, XAS ...) are possible?

3. High power laser and shock diagnostics interfaced with synchrotron beamline
 Do we have enough energy density?
 What P, T conditions are achievable? → Target design
 How do we cope with the lack of expertise?

DYNAMIC COMPRESSION AT ESRF: FIRST STEPS

ESRF

GCLT laser 30J-10 ns

XH detector

Sample changer In vacuum chamber

Target

I EUCALL Target Workshop, Dresden, Germany I August 2016 I S. Pascarelli

I (W/cm²)	Laser spot (µm)	P(GPa)	T(K)
0.4 10 ¹³	350	80	1500
5 10 ¹³	90	500	13000

I EUCALL Target Workshop, Dresden, Germany I August 2016 I S. Pascarelli

HPLF-I

Jan-March 2016:	Feasibility study ~100 J laser + laser cabin on ID24.
April 2016 :	Deliverable: full proposal w/cost estimates, model for operating the laser.
Mid 2016:	CFT for 100-200 J laser (upgradable), delivery 2018
	Design studies for installation of laser, associated optics, shock diagnostics.
	Allocation of two positions to this project
2018:	Operating laser on ID24
Mid 2018:	Start of User Operation of HPLF-I

HPLF-II

- extension to XRD, XRI, XES on 2 adjacent beamlines
- upgrade of laser power to > 300 J

9-10 Dec 2016: ESRF-EBS Workshop: discussion of future beamlines w/user community
6-7 June 2017: 2nd Workshop on "Studies of Dynamically Compressed Matter with X-rays"

HPLF-I LOCATION

The laser system will be installed in a dedicated laboratory adjacent to ID24.

OUTLOOK

New perspectives for dynamic compression studies for a wide user community

- Very challenging project.
- Cannot succeed without the help of experts in shock, diagnostics, target design, etc...

- Building a strong user community will be a priority in the coming years.
- Strong complementarities with HED @ XFEL
- Longer X-ray pulse, lower flux \rightarrow Different requirements, constraints on targets

□ EUCALL and all its initiatives: an important gateway

